Proteomic Assessment of Caffeine Effects on Coral Symbionts
Kelly Pollack, Kimberly Balazs, and Oladele Ogunseitan


Downloaded from http://pubs.acs.org on April 15, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Proteomic Assessment of Caffeine Effects on Coral Symbionts

KELLY POLLACK,1 KIMBERLY BALAZS,1 AND OLADELE OGUNSEITAN*1,5
School of Social Ecology, School of Biological Sciences, and Department of Population Health and Disease Prevention, Program in Public Health, University of California, Irvine, California 92617

Received February 15, 2008. Revised manuscript received January 6, 2009. Accepted January 8, 2009.

Caffeine is the most widely consumed and excreted psychoactive drug in the world. It is a ubiquitous tracer of urban wastewater, but its ecological effects are not well understood. We hypothesized that caffeine exposure is associated with coral bleaching. Here we report the effects of caffeine on four species of coral algae endosymbionts belonging to three widely distributed clades: Clade A Symbiodinium microadriaticum (A), Clade B Symbiodinium sp. from Aiptasia pallida (B6), Clade B Symbiodinium sp. from Pseudoterogorgia bipinnata (B7), and Clade C Symbiodinium goreaui (C). To assess the effect of caffeine on algal physiology we used two-dimensional polyacrylamide gel electrophoresis and peptide mass spectrometry to identify protein sensitive to caffeine exposure. The results show several upregulated and several downregulated polypeptides in all algal species tested. The heat-shock proteins are among the commonly affected proteins, suggesting that caffeine exposure associated with sewage discharge into natural waters may exacerbate the effects of stress from other environmental factors such as changes in ocean temperature and pH.

Introduction

Coral bleaching is a global environmental problem. The most current surveys have found 52%−90% bleaching in reefs worldwide (1). This is particularly alarming because these changes are not present in thousands of years of geologic records (2). Several hypotheses proposed to explain coral bleaching include UV-light exposure, anthropogenic global warming, overpopulation, and chronic pollution from sewage disposal (2−4). Although there are strong correlations between increased sea surface temperatures and bleaching, it is likely that a complex interaction of causes is responsible, and bleaching is still not completely understood (2, 4). In this article, we explore the potential ecological effects of caffeine, a ubiquitous component of domestic wastewater, for contribution to the destabilization of coral health through its effect on algal symbionts. Caffeine (1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione or 1,3,7-trimethylxanthine) is a psychoactive stimulant consumed worldwide as part of the human diet or as part of specific pharmacological preparations. Caffeine is also the fourth most commonly found organic chemical and the most commonly found pharmaceutical product in surface waters (5). This is due to ubiquitous human excretion of caffeine and its recalcitrance in most wastewater treatment processes. The global average per capita consumption of caffeine is approximately 70 mg/person/day and up to 3% (w/w) is excreted intact (6). Caffeine is not sufficiently metabolized by wastewater microorganisms except by rare enzymes found in caffeine degrading bacteria such as Pseudomonas putida biotype A (ATCC 700097) (7). As such, caffeine has been successfully used as a reliable tracer of wastewater effluent discharge into natural water systems, including the oceans (6, 7). In many of these monitoring programs, caffeine concentrations are consistent but typically very low in the nanogram per liter range, and it is not clear if such low concentrations will have ecological effects alone or through synergistic interactions with other pollutants. We have estimated that up to 35 kg of caffeine are released daily into the Pacific Ocean, based on the discharge of approximately 946 million liters of treated wastewater from the Orange County Sanitation District in Southern California. In the Florida Keys, an urbanized region that is parallel to the third largest coral reef ecosystem in the world, Gardinali and colleagues have consistently detected caffeine at concentrations up to 200 ng per liter in coastal waters (8). The source of caffeine in this valuable reef environment is associated with the lack of adequate sewage treatment through the preponderance of private cesspits and underground injection wells that contribute to the degradation of coastal water quality.

Caffeine acts as a biochemical antagonist of adenosine receptors in the human brain, thereby increasing the synthesis of the neurotransmitter dopamine. Through its competitive inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase, caffeine causes the accumulation of cAMP in cells, which increases the activation of protein kinase A toward phosphorylation of enzymes involved in glucose metabolism (9). Caffeine is considerably more toxic to other organisms, including horses, dogs, parrots, and spiders, than to humans due to their underdeveloped capacity to metabolize the drug (10).

There are few studies on the effect of caffeine on aquatic organisms spurned in part by the discovery of caffeine in most water systems. As far back as 1930, Brinley reported on the effect of caffeine on oxygen consumption in freshwater fish Erimyson sucetta oblongus, Mitchell and bullfrog tadpoles,
Rana catesbiana (11). More recently, Smith and Burgett (12) reported that caffeine at up to 600 µg/L had no statistically significant effect on the survivorship of the American toad, Bufo americanus tadpoles. There are even fewer studies on the physiological effects of caffeine in marine organisms. It has been shown that 5 g/L (25 mM) caffeine causes bleaching through its effect on protein phosphorylation (13). In Aiptasia pulchella 2 g/L (10 mM) of caffeine evoked release of symbiotic algae at 25 °C, and the proteins of caffeine-treated cnidarians show reduced phosphorylation compared to those of the control (13).

Based on the unresolved debate regarding the actual causes of coral bleaching, the ubiquitous distribution of caffeine, and previous research linking caffeine to cnidarian bleaching, we hypothesized that caffeine contributes to physiological stress experienced by coral ecosystems impacted by urban effluents. Here we show the effect of caffeine on growth and expression of proteins in algae associated with coral.

**Methods Summary**

**Algal Strains.** Four zooxanthellae species from three phylogenetic cladal groups of hard coral symbionts were investigated. Species “A” refers to Clade A Symbiodinium microadriaticum from the Canadian Center for the Culture of Microorganisms (CCCM) culture #411 (sensu Trench) isolated from the anemone Zoanthus sociatus off the coast of Florida. Species “B6” refers to Clade B, ITS-type B1 Symbiodinium sp. from the Provasoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP) culture #2460 (sensu LaJeunesse) isolated from the anemone Aiptasia pallida off the coast of Florida. Species “B7” is Clade B, ITS-type B1 Symbiodinium sp. from the Provasoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP) culture #2460 (sensu LaJeunesse) isolated from the octocoral Pseudoterogorgia bipinnata off the coast of Jamaica. Species “C” is Clade C, ITS-type C1 Symbiodinium goreaui CCMP culture #2466 (sensu LaJeunesse) isolated from the anemone Discosoma sancti-thomae off the coast of Jamaica. Polymerase chain
reaction (PCR) based on the following primer pair was used to confirm the identification of the different clades: (5′-TCAGTACAAATAATATGCTG-3′) and (5′-GGATAACAATTTCA-CACAGGTATCGCCCCAATTAAACAGT-3′).

Despite similarities in photomicrographs of the algae, their genotypic fingerprints are quite distinct and recognizable and are used to confirm the integrity and purity of the cultures (14, 15) (Figure 1).

The four species were cultivated in a natural seawater medium f/2-Si obtained from CCMP, West Boothbay Harbor, Maine. Cultures (100 mL) were incubated at 24 °C on a 12:12 light:dark cycle using an exclusive light intensity of 50 µmol photons m⁻² s⁻¹. All glassware used for culturing and testing were washed with a 10% HCl solution, repeatedly rinsed with deionized water, and sterilized.

**Effect of Caffeine on Algal Growth.** To measure the effect of caffeine on algal growth, triplicate cultures were incubated with caffeine at 0, 50 µg/L, 500 µg/L, 5 mg/L, 30 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L. Culture growth was monitored spectrophotometrically at 675 nm (16, 17), and caffeine was monitored at 275 nm (7) with Spectramax 250 (Molecular Dynamics, Inc., Sunnyvale, CA), and differential display images were analyzed using Progenesis PG240 software including image warping with TT900 software (version 2006, Nonlinear Dynamics).

Next, three polypeptide spots per species were chosen for LC-MS/MS analysis on the basis of the most statistically significant (and a good visual difference) for the following: The polypeptide spot with the largest increase in spot density in cultures with caffeine, the polypeptide spot with the largest decrease in spot density in cultures with caffeine, and the polypeptide spot with the largest change of spot density within the molecular weight range of cytochrome P450 enzymes which are known to metabolize caffeine in many organisms including some algae. Algae typically have P450 in the molecular mass range of 46–67 kDa (19). The three polypeptides from each culture were digested with trypsin.
and analyzed by LC-MS/MS at Columbia University’s Protein Core Facility. The sequences were searched against the NCBI database to generate mascot reports and partial peptide sequence matches.

To confirm the identity of heat-shock proteins, we performed Western immuno-blotting using PVDF membranes. After staining with Coomassie Brilliant Blue R-250, the blot was blocked for 2 h in 5% Carnation Nonfat Dry Milk (NFDM) in Tween-20 tris buffer saline (TTBS) and rinsed in TTBS. The membrane was incubated in primary antibody (anti-HSP 70 Product SPA-812 Lot # 03200632), diluted 1:25,000 in 2% NFDM TTBS overnight, and rinsed three times for 10 min each in TTBS. The blot was then incubated in secondary antibody (anti-Rabbit IgG HRP (Amersham, Batch 364579), diluted 1:2000 in TTBS for 2 h, rinsed in TTBS, and exposed to X-ray film.

**Caffeine Stability in Seawater.** Water samples were collected from San Diego Creek and adjacent Pacific Ocean at Corona Del Mar State Beach and transported to the laboratory within 2 h for processing. Caffeine was added to 250 mL of water samples for a final caffeine concentration of 20 mg/L in triplicate in Teflon flasks incubated either in darkness or light (50 μmol photons m⁻² s⁻¹) on a 12:12 light: dark cycle. Residual caffeine concentration was monitored daily at 274 nm using a Spectramax 250 spectrometer for 30 days.

**Results and Discussion**

There are several reasons to explore the potential ecological effects of caffeine, including its prevalence as an environmental contaminant associated with urban wastewater effluent and its noted physiological effects. With respect to the ocean, caffeine is also known to affect calcium metabolism, which may further exacerbate the leaching of calcium associated with the ocean acidification resulting from the effects of the increasing atmospheric carbon dioxide concentration in the atmosphere and global warming on the quality of coral ecosystems (1, 20). With this research, we tested the hypothesis that caffeine exposure also affects growth and physiological processes in marine algae associated with corals and that the introduction of caffeine into the ocean through wastewater discharge may be contributing in various ways to coral bleaching.

**Effect of Caffeine on Algal Growth.** We discovered that the normal growth rate of algae vary considerably, regardless of the clade affiliation (Figure 2, panel a). Algae belonging to clades A and B6 grew the quickest, reaching stationary phase after 15 days, whereas clade C alga achieved stationary phase after 40 days and clade B7 after 50 days of incubation. Caffeine significantly suppressed algae growth during the logarithmic phases (Figure 2, panels b-e). The minimum inhibitory concentration (MIC) of caffeine for each alga was 30 mg/L for C and B7, 50 mg/L for A, and 75 mg/L for B6. Apparently some algae are more resistant to the effects of caffeine than others, a variation in tolerance that has been shown for other organisms. For example, after 22 days of incubation with caffeine, the growth of alga A appears to increase, suggesting that this organism is able to utilize caffeine as a nutrient.

The variation in algae sensitivity to a potentially toxic chemical such as caffeine is interesting and might be informative in attempts to re-establish corals that have been adversely affected by pollutants. We focused on *Symbiodinium* because algae in this group are the most common endosymbionts among coral reef-building cnidarians, planthelminths, mollusks, and protists (21), although more information will be needed before strategic coral-reseeding programs can be implemented. These symbiont populations may reach densities of several million or more organisms per cm² of host tissue (22). Several *Symbiodinium* species exhibit specific biogeographic distribution patterns and live within multiple scleractinian coral hosts. Specifically, members of the *Symbiodinium* clades A and B are typically found in higher latitudes, whereas clade C *Symbiodinium* is abundant in tropical latitudes (23). Due to a large amount of variability, subcladal species are not yet well-distinguished (24), and the biogeographical distribution pattern and host specific distribution of the *Symbiodinium* clades is not completely understood and is highly debated (25).

**Effect of Caffeine on Differential Polypeptide Accumulation.** Figures 3 and 4 show the differential display of algal polypeptide pools produced in the presence and absence of caffeine. In clade A, 279 polypeptide spots were detected in caffeine-exposed cells. Of these, 14 were significantly upregulated and 13 were significantly downregulated relative to the control (p < 0.05). In clade B6, 319 polypeptide spots were detected, with 22 upregulated and 7 downregulated spots significantly affected relative to the control. In B7, 319 polypeptide spots were detected, and 19 upregulated and 6 downregulated proteins were significantly altered. In C, 431 polypeptide spots were detected, of which 12 were upregulated and 37 were downregulated. From these, we selected protein spots with quantities that were statistically significantly different between caffeine-exposed and unexposed cultures (p ≤ 0.043) and that met the criteria described in the methods. The results show that these proteins ranged widely in size from 23 kDa to 186 kDa. The isoelectric points (pI) ranged from 4.6 to 7.4. Quantitative analysis also shows that there was a −9.2 and +3.3 fold difference range in quantity of protein in these particular polypeptide spots (Table 1). These data show that caffeine influences a wide range of proteins both within the same strain and between different strains and clades.

Several of the proteins featured in Table 1 function in physiological stress response, photosynthesis, or glycolysis. Heat-shock proteins (Hsp60, Hsp70, and Hsp90) were the most common significantly affected proteins under caffeine exposure, upregulated 2–3-fold in clade B and downregulated up to 9-fold in clade C (p < 0.01). Heat-shock proteins are involved in the folding of newly synthesized proteins, transport of proteins across membranes, refolding misfolded or aggregated proteins, and control activity of regulatory proteins (25). Under stressful environmental conditions such...
<table>
<thead>
<tr>
<th>Clade A</th>
<th>Symbiodinium microadriaticum (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW (Daltons)</td>
<td>160,420</td>
</tr>
<tr>
<td>pl</td>
<td>4.6</td>
</tr>
<tr>
<td>significant change in protein concn upregulated (+) or downregulated (-) *p &lt; 0.05; ** p &lt; 0.01</td>
<td>-4.6 *</td>
</tr>
<tr>
<td>“Match Score” *=matched to a Symbiodinium sp. in the database</td>
<td>121 *</td>
</tr>
<tr>
<td>number of similar peptides included in matched score</td>
<td>3</td>
</tr>
<tr>
<td>putative protein identification</td>
<td>peridinin chlorophyll-a binding protein</td>
</tr>
<tr>
<td>putative protein function</td>
<td>photosynthesis</td>
</tr>
<tr>
<td>Clade B</td>
<td>Symbiodinium sp. from Pseudotergorgia bipiniana (B7)</td>
</tr>
<tr>
<td>MW (Daltons)</td>
<td>186,592</td>
</tr>
<tr>
<td>pl</td>
<td>6.1</td>
</tr>
<tr>
<td>significant change in protein concn upregulated (+) or downregulated (-) *p &lt; 0.05; ** p &lt; 0.01</td>
<td>+3.3 *</td>
</tr>
<tr>
<td>“Match Score” *=matched to a Symbiodinium sp. in the database</td>
<td>ND b</td>
</tr>
<tr>
<td>number of similar peptides included in matched score</td>
<td>ND b</td>
</tr>
<tr>
<td>putative protein identification</td>
<td>methionine adenosyltransferase</td>
</tr>
<tr>
<td>putative protein function</td>
<td>S-adenosyl methionine synthesis</td>
</tr>
<tr>
<td></td>
<td>Clade B</td>
</tr>
<tr>
<td>MW (Daltons)</td>
<td>75,950</td>
</tr>
<tr>
<td>pl</td>
<td>5.9</td>
</tr>
<tr>
<td>significant change in protein concn upregulated (+) or downregulated (-) *p &lt; 0.05; ** p &lt; 0.01</td>
<td>+2.9 *</td>
</tr>
<tr>
<td>“Match Score” *=matched to a Symbiodinium sp. in the database</td>
<td>69</td>
</tr>
<tr>
<td>number of similar peptides included in matched score</td>
<td>1</td>
</tr>
<tr>
<td>putative protein identification</td>
<td>vacuolar ATP synthase catalytic subunit A</td>
</tr>
<tr>
<td>putative protein function</td>
<td>heat-shock response</td>
</tr>
<tr>
<td>Clade C</td>
<td>Symbiodinium goreaui (C)</td>
</tr>
<tr>
<td>MW (Daltons)</td>
<td>128,105</td>
</tr>
<tr>
<td>pl</td>
<td>5.7</td>
</tr>
<tr>
<td>significant change in protein concn upregulated (+) or downregulated (-) *p &lt; 0.05; ** p &lt; 0.01</td>
<td>-5.3 **</td>
</tr>
<tr>
<td>“Match Score” *=matched to a Symbiodinium sp. in the database</td>
<td>102</td>
</tr>
<tr>
<td>number of similar peptides included in matched score</td>
<td>2</td>
</tr>
<tr>
<td>putative protein identification</td>
<td>carbon monoxide dehydrogenase</td>
</tr>
<tr>
<td>putative protein function</td>
<td>heat-shock response</td>
</tr>
</tbody>
</table>

*Selected polypeptides were characterized through mass spectrometry and amino acid sequence analysis. Sequence comparisons to depository data revealed matches to one or more polypeptides in Symbiodinium and/or other species. b ND = Not detected.
as elevated ambient temperatures which have been associated with coral bleaching. Heat-shock proteins are known to be induced in coral (26). Hsp 70 levels have been found to increase markedly in tropical reef coral *G. djiboutiensis* following 2 h heat shocks at 33, 36, 38, and 40 °C (27). Our results show now that the heat-shock response is also induced in coral endosymbionts exposed to caffeine. We confirmed the identity of putative heat-shock proteins using Western immunoblotting. This result suggests that caffeine may exacerbate the effects of other stressors that induce similar responses such as elevated temperatures and acidified oceans in a synergistic way to increase the pace and intensity of coral bleaching.

As noted by Imre and colleagues (28) up to 0.045% caffeine was measured in certain corals. However, caffeine and chemically related compounds are common plant metabolites and therefore may have been produced in situ. In order to explore the chemical fate of caffeine in ocean waters and whether caffeine is sufficiently stable to accumulate to levels that can induce stress response, we used microcosm experiments, and the results are shown in Figure 5. The results show that caffeine degrades completely in the dark after 6 days in freshwater and 11 days in ocean water. We did not detect significant caffeine degradation when microcosm flasks were incubated under lighted conditions. We are exploring this discrepancy further, as it may have to do with the formation of yet uncharacterized byproducts of caffeine metabolism. In all samples where caffeine degradation occurred, we were able to isolate *Pseudomonas putida*, which has been shown previously to utilize caffeine as the sole carbon source, but this organism is not especially adapted to marine ecosystems (6, 7).

This study contributes important information about the synthesis of Hsp in coral endosymbionts, as a potential addition to the repertoire of molecular tools for assessing ecosystem health and the effects of environmental stressors (29, 30). We acknowledge that the concentrations of caffeine determined to be influential in this study are orders of magnitude higher than ambient levels of caffeine routinely found in marine ecosystems inhabited by coral reefs (8). Nevertheless, the central importance and sensitivity of the stress response pathway provide a strong rationale for further studies on the potential impacts of chronic exposure to low doses of caffeine and the possibility of synergistic effects in the presence of other stressors and chemical pollutants. Based on the results presented here, we cannot rule out the possibility that caffeine associated with urban sewage effluent (31–35) can exacerbate the effects of stress from other environmental factors (e.g., global warming) and act as additive stressors in the coral reef environment. This research has important implications to wastewater processing and management and coral reef management globally. However, more work needs to be done to better understand the role of Hsp within coral and its algal symbionts.

**Acknowledgments**

This research benefited from various forms of support and assistance provided by the Urban Water Research Center, Kendrick Laboratories, Madison, WI; Mary Ann Gavinowicz, Ph.D., Protein Core Facility, Columbia University College of Physicians & Surgeons, NY; Mary Alice Coffroth, Professor, Graduate Program in Evolution, Ecology and Behavior, State University of New York at Buffalo; Virginia Weis, Professor, Department of Zoology, Oregon State University, Corvallis, OR; Todd LaLeune, Assistant Professor, Florida International University, Miami, FL; Canadian Center for the Culture of Microorganisms (CCCM), Vancouver, B.C.; and Provosoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP), Boothby Harbor, ME. This is UWR contribution 35.

**Literature Cited**


